

COE CST 2nd Annual Technical Meeting:

High Temperature Pressure Sensors for Hypersonic Vehicles

David Mills

October 31 – November 1, 2012

Overview

- Team Members
- Purpose of Task
- Research Methodology
- Results
- Next Steps
- Contact Information

Team Members

- University of Florida
 - Mark Sheplak Professor, Dept. of Mechanical and Aerospace Engineering
 - David Mills Graduate Research Assistant
 - Daniel Blood Graduate Research Assistant
- Florida State University
 - William Oates Asst. Professor, Dept. of Mechanical Engineering
 - Justin Collins Graduate Research Assistant

Purpose of Task

- Design, fabricate, and characterize a robust, high-bandwidth micromachined pressure sensor for harsh environments
 - Applications
 - High speed reentry vehicles
 - Hypersonic transports
 - Gas turbines
 - Scramjets
 - Performance Metrics
 - Temperature: >1000 C
 - Bandwidth: >10 kHz
- Develop novel processing techniques for the fabrication of high temperature sensors
 - Laser micromachining processes for patterning of structures in sapphire and alumina
 - Bonding process to for fabrication of multi-wafer sensors enabling three-dimensional structures

Research Methodology

- Fiber optic lever
 - Intensity modulation
 - Single fiber in/fiber out
- Optical configuration
 - Multimode silica fibers
 - More efficient coupling to sapphire fiber
 - Incoherent LED light source
 - Reference photodiode to monitor source drift

Device Fabrication

- 3mm tube sensor
 - 50 µm sapphire diaphragm
 - Deposit platinum reflective layer w/ titanium adhesion layer
 - Laser machine 4.5 mm recess in alumina tube
 - Epoxy diaphragm inside recess
- 7mm flat sensor
 - 50 µm sapphire diaphragm
 - Deposit platinum reflective layer w/ titanium adhesion layer in center
 - 1 mm thick sapphire substrate
 - Machine 7 mm diameter hole in 1 mm thick sapphire to form back cavity
 - Deposit 500 nm platinum bonding layer on 1 mm thick substrate
 - Align and bond diaphragm to cavity substrate

Fabrication Challenges

- Picosecond laser micromachining of sapphire
 - Thermal damage to surrounding material affects material properties and reliability
 - Understand relationship to machining parameters
- Spark Plasma Sintering (SPS) bonding of sapphire
 - Reduced temperatures and holding time compared to traditional vacuum hot press
 - Understand relationship between bond parameters and bond strength, thermal damage
- High-temperature packaging
 - Minimize thermal stress effects

SPS Bonding Process

Original Process 4kN - Bond parameters Sapphire • Max temp: 800 C Samples • Heating rate: 25 C/min Hold time: 5 minutes Low bond strength - Substrate cracking issues Graphite Punch Modified Process Reduced pressure load via spacer and compressible graphite foil 4kN - Bond parameters Sapphire • Max temp: 1200 C Samples • Heating rate: 50 C/min • Hold time: 5 minutes Thermocouple Improved bond strength via higher Recess temps No visible cracks observed

COE CST 2nd Annual Technical Meeting (ATM2) October 31 – November 1, 2012

Federal Aviation

Administration

Bond Characterization

Tensile test

- Studs bonded to substrates using Hysol 9309.3NA adhesive
- Original SPS sample tensile strength: ~350 kPa
- Samples created using modified SPS process: >12 MPa
 - Adhesive joint failed before the bond interface
 - Need improved method for characterization

Bond Characterization

- Chevron test
 - Based on SEMI Standard MS5-1211
 - Platinum bonding layer patterned in chevron geometry on sapphire substrate
 - Blocks are attached at the free ends of the bonded specimen
 - Chevron tip creates a pre-crack to initiate failure
 - Max load related to fracture toughness, K_c , and critical wafer bond toughness, G_c

$$K_c \propto F_{max}$$

 $G_c \propto K_c^2$

Sensor Fabrication

- High-temp prototype sensors
 - 3mm tube sensor
 - Ti/Pt-coated sapphire diaphragm epoxied to alumina housing
 - Sapphire fiber w/ zirconia optical ferrule
 - -7mm flat sensor
 - 50um sapphire diaphragm attached to 1mm thick back-cavity using SPS bond process
 - Reflective film degradation, buckling

Sensor Packaging

- Sensitivity Calibration
 - Experimentally determined optimal distance from fiber to diaphragm
 - Max deflection sensitivity of 1.92 mV/ μ m

Sensor Packaging

- High-temp epoxy used on all connections
- Stainless steel braid and crimps
- Standard FC optical connector couples to traditional silica optical fiber components
- Package capable of operation up to 600 C

COE CST 2nd Annual Technical Meeting (ATM2) October 31 – November 1, 2012

Federal Aviation Administration

Next Steps

- Process development
 - Laser machining parameters for thinning sapphire diaphragms
 - Evaluate SPS bonding process using chevron test specimens
 - Improve metal film survivability during bonding
- Package 7mm flat sensor
- Static pressure calibration
- PWT calibration
 - Frequency response
 - Linearity
- High-temperature calibration
 - Temperature drift
 - Environmental chamber

Contact Information

- David Mills dm82@ufl.edu
- Mark Sheplak sheplak@ufl.edu

COE CST 2nd Annual Technical Meeting (ATM2) October 31 – November 1, 2012

Federal Aviation Administration

Bond Characterization

- Chevron test
 - Fracture toughness, $K_c = \frac{F_{max}}{B\sqrt{w}}Y_{min}$ where B = w = 10 mm, and Y_{min} is a geometry function determined using FEM simulations
 - Critical wafer bond toughness, $G_c = \frac{K_c^2}{\overline{E}}$ where $\overline{E} = \frac{E}{1 - \nu^2}$ for an isotropic material

Laser Micromachining

- "Long" Pulsewidths (>10 ps)
 - Industry standard
 - High reliability
 - Large heat affected zone (HAZ)
 - Micro-cracking and redeposit

Laser Micromachining

- Ultrashort Pulsewidths (<10 ps)
 - Direct solid-vapor transition
 - Reduced HAZ and micro-cracking
 - Lower fluence required
 - Deterministic material removal rate
 - Research tools
- Oxford Lasers J-355PS Laser Micromachining Workstation
 - Coherent Talisker 355 nm DPSS laser
 - Pulse length <10 15 ps</p>
 - Pulse frequency up to 200 kHz
 - Power adjustable from ~0.05 4.5 W
 - XYZ stages & galvonometer

2.5 mm

Thermocompression Bonding

- High temperature bonding process
 - 70-90% of melting point (up to 1450 C for sapphire & Pt)
 - 1-10 MPa substrate pressure
 - Up to 24 hour hold time issues with survivability of patterned features
- Spark Plasma Sintering (SPS) process
 - Large current density (~1000 A/cm²) causes rapid resistive heating of substrates
 - Faster heating and cooling rates than hot press
 - Reduced temperature and holding time for similar performance

Process Development Results

- Laser Machining
 - Cutting speed: 100 mm/s
 - Frequency: 100 kHz
 - Pulse overlap: ~86%
 - Laser fluence
 - Alumina: 2.45 J/cm²
 - Sapphire: 4.48 J/cm²
- Bonding
 - Bond parameters
 - Max temp: 800 C
 - Heating rate: 25 C/min
 - Hold time: 5 minutes
 - Tensile strength: ~350 kPa
 - Substrate cracking issues

Fabrication Results

- Low Temperature Prototype
 - -Silicon diaphragm
 - -Silica fiber and low temp epoxy
- High Temperature Sensor
 - -Pt-coated sapphire diaphragm
 - Sapphire fiber w/ zirconia optical ferrule

COE CST 2nd Annual Technical Meeting (ATM2) October 31 – November 1, 2012

Federal Aviation Administration

Backup Slides

Prototype Sensor Static Calibration

Laser Micromachining Trends

Laser Micromachining Trends

Oxsensis "Wavephire" Sensor

- Micro-machined sapphire pressure sensor with sapphire fiber-optic
 - Extrinsic Fabry Perot interferometer using at least two wavelengths
 - Diaphragm is micromachined using proprietary process
 - Limitations prevents further miniaturization to sub-millimeter size
- Specifications
 - Temperature range
 - -40 to 600°C (continuous)
 - -40 to 1000°C (research and development)
 - 100 dB dynamic range
 - Uncertainty <±10%

Dynamic Pressure Sensors

Diaphragm Sensors

- Diaphragm deflects vertically due to incoming pressure
- Displacement sensed via transduction method

Transduction Schemes

Capacitive, optical, piezoresistive, piezoelectric, etc.

Choosing a Transduction Scheme

- Factors Influencing Choice of Transducer Concept
 - <u>Specifications</u>: "what do you want to measure?"
 - <u>Physics related</u>: dynamic range, bandwidth, spatial resolution, single sensor versus arrays, fundamental vs. control, etc.
 - Environment: "where do you want to measure it?"
 - Wind tunnel, flight test, gas versus liquid, etc.
 - Temperature, pressure, humidity, dirt, rain, EMI, shocks, cavitation, fouling, etc.
 - Packaging Requirements: "where do you mount device?"
 - Application dependent: flush-mounting, single sensor versus arrays (packing density), etc.
 - Other Factors:
 - Budget, time-scale for test, risk tolerance, etc.

Towards High-Temperature

- Somewhat Unchartered Territory in MEMS
 - Silicon starts to plastically deform at 650 °C
 - Any circuit devices will be temperature limited (diodes, ICs, etc.)
- High-Temperature Limits Transducer Choices
 - Piezoresistive:
 - Leakage current and resistor noise increase with temperature
 - Limited to around 200 °C or must be cooled
 - Capacitive:
 - Low capacitance requires buffer amplifier close to sensor
 - High-temperature, low noise, high-input impedance amplifiers do not exist
- Optical is best if you can get it off optical bench
 - Detection electronics are remotely located
 - High temperature sapphire fibers and substrates exist

□ <u>Piezoelectric</u>: Sensitivity= 0.75 mV/Pa, DR= 48-169 dB, f_{res} = 50 kHz

Microphones / Pressure Sensors

□ <u>Fiber Optic</u>: Sensitivity= 0.5 mV/Pa, DR= 70-160 dB, f_{res} > 100 kHz Acoustic Wayes

• Hostile environments

 \Box <u>Piezoresistive</u>: Sensitivity= 1.8 μ V/Pa, DR= 52-160 dB, f_{res} > 100 kHz

• Directional acoustic arrays

COE CST First Annual Technical Meeting (ATM1) November 9 & 10, 2011

Material Properties

		Units	Silicon	Silica	Sapphire	Diamond	6H SiC
Material Properties	Melting Temp	°C	1412 ¹	1650	2040 ²	3650 - sublimes	2830 - sublimes ¹
	Max Use Temp	°C	650 - strain point	1100 - no load ⁷	1800 - no load ²	650 - Si substrate	1650 - no load ⁵
	Tensile Strength	GPa	7.0 ⁶	8.4 ⁶	15.4 ⁶	53.0 ⁶	21.0 ⁶
	Poission's Ratio	-	0.28 - [100] plane, 0.26 - [110] plane ¹	0.14 - 0.17 ⁹	0.25 - 0.3 ²	0.1 ¹	0.14 ⁵
	Young's Modulus	GPa	130 - [100] plane, 170 - [110] plane ¹	73 ⁶	530 ⁶	1035 ⁶	700 ⁶
	CTE, 20°C	µm/m-℃	2.6 ¹	0.55 ⁹	5 - \perp to C-axis ²	0.8 ¹	4.7 - ∥ to C-axis, 4.3 - ⊥ to C-axis ¹
	Thermal Conductivity, 20°C	W/m-°C	130 ¹	1.4 ⁹	41.9 ²	600-2000 ¹	490 ¹
	Thermal Shock Parameter ⁸		1.52E+06	2.52E+05	1.83E+05	3.46E+07	2.94E+06
	Optical Transmission, UV-NIR	%	~0 - λ < 1.05μm, 50 - λ > 1.05μm ⁴	86-93 ⁷	80-90 ³	60-70 ⁹	70-80 ¹
							2.59 - to C-axis,
	Refractive Index	-	3.42 (IR) ¹	1.45 @ 589 nm ⁷	1.8 - 1.6, UV-IR ²	2.4 (IR) ¹	2.55 - ⊥ to C-axis (IR) ¹
Transducer Issues	Optical Fiber Availability		no	yes	yes	no	no
	Substrate Availability		excellent	excellent	excellent	poor	limited
	Patternability / Process		Standard MEMS Processes		Laser Micromachining	Liftoff	SiC specific DRIE process, micromolding
•	Transduction Mechanisms						

